
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Final Report

Hierarchical Strategy for Rapid Analysis
Environment

NASA Grant NAG-1-01080
February 1,2001-January 31,2003

John Whitcomb
Center for Mechanics of Composites

Department of Aerospace Engineering
Texas A&M University

May, 2003

I
I
I
I

11
‘ I
I
I
I
I
I
1
I
I
1
I
I
I
I

Final Report

Hierarchical Strategy for Rapid Analysis
Environment

NASA Grant NAG-1-01080
February 1,2001-January 31,2003

John Whitcomb
Center for Mechanics of Composites

Department of Aerospace Engineering
Texas A&M University

May, 2003

I
I

2

Table Of Contents

I
I
I

I
I
I

3 Table of Figures ..
Introduction.. ... 4

5

10

HS4RAE - Concepts ... 16

Background ...
The HS4RAE System - Overview.

HS4RAE - Implementation 20

HS4RAE Graphic User Interface 25

Example I ... 30

Example I1 ... 37

40 Conclusion and Future work
Appendix.. .. 41

References .. 48

HS4RAE Scripting .. 41
Mesh Data File Format ... 47

Summary of hyperlinked documentation 51

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3

Table of Figures

Figure 1 : Inheritance tree and its different views 12
Figure 2: Interface to external software .. 14
Figure 3: Mesh association (Inheritance of geometry) ... 17
Figure 4: Joining components using digital glue .. 18
Figure 5: Buffering of solutions 19
Figure 6: Class diagram of the hierarchical definition module 2 1
Figure 7: Data flow ch ... 22
Figure 8: HViewer screenshot .. 28
Figure 9: VB GUI screenshot ... 29
Figure 10: Example I - load and constraint conditions .. 30
Figure 1 1 : Model LS Analysis - Stress Plot (axx) .. 3 1
Figure 12: Model LC Analysis - Stress Plot (axx) .. 3 1
Figure 13: Model H1 analysis results ... 32
Figure 14: Screenshot of Plot2002 GUI (with model H2 results) 33
Figure 15: Stress Plot of component F lc (~ ~ x x) ... 33
Figure 16: Screenshot of Plot2002 GUI (with Model F2c) .. 34
Figure 17: Model script for Example-I ... 35
Figure 18: Model Handler script for Model HI .. 36
Figure 19:Example I1 - load and constraint conditions 37
Figure 20: Screenshot of GUI with fuselage panel ... 38
Figure 21: Model and component stress plots for the refined model of the panel (oxx) ... 39

I
I
I
4
I
1
I
I
I
I
I
I
1
I
I
I
I
I
I

4

Introduction

A new philosophy is developed wherein the hierarchical definition of data is made use of

in creating a better environment to conduct analyses of practical problems. This system

can be adapted to conduct virtually any type of analysis, since this philosophy is not

bound to any specific kind of analysis. It provides a framework to manage different

models and its results and more importantly, the interaction between the different models.

Thus, it is ideal for many types of finite element analyses like globalAoca1 analysis and

those that involve multiple scales and fields.

The system developed during the course of this work is just a demonstrator of the basic

concepts. A complete implementation of this strategy could potentially make a major

impact on the way analyses are conducted. It could considerably reduce the time frame

required to conduct the analysis of real-life problems by efficient management of the data

involved and reducing the human effort involved. It also helps in better decision making

because of more ways to interpret the results. The strategy has been currently

implemented for structural analysis, but with more work it could be extended to other

fields of science when the finite element method is used to solve the differential

equations numerically.

This report details the work that has been done during the course of this project and its

achievements and results. The following section discusses the meaning of the word

hierarchical and the different references to the term in the literature. It talks about the

development of the finite element method, its different versions and how hierarchy has

been used to improve the methodology. The next section describes the hierarchical

philosophy in detail and explains the different concepts and terms associated with it. It

goes on to describe the implementation and the features of the demonstrator.

A couple of problems are analyzed using the demonstrator program to show the working

of the system. The two problems considered are two dimensional plane stress analysis

problems. The results are compared with those obtained using conventional analysis.

The different challenges faced during the development of this system are discussed.

Finally, we conclude with suggestions for future work to add more features and extend it

to a wider range of problems.

I
I
I
I
I
I
I
I
I
I
1
I
1
I
I
I
I
1
I

5

Background

The term “hierarchical” is used to refer to different types of ideas in the literature. It is

important to know what we mean by this in order to understand the uniqueness of this

philosophy and the differences when compared to other methodologies out there. This

section talks about the relevance of hierarchy, the finite element method in general and

some of its various versions especially those that deal with some sort of hierarchy. It

mentions the bottlenecks faced when conducting an analysis and other common problems

facing the finite element method. Attached to the end of this report is a brief introduction

to the hyperlinked version of the documentation that is being developed. This electronic

form of the documentation will be more comprehensive than is practical with a “paper

oriented” report.

There is an aspect of hierarchyhnheritance in both science and almost every thing we see

in day-to-day life. The whole theory of evolution of life itself is based upon inheritance.

In the same way, the human race can be considered a huge hierarchy with every human

being related to one another in some way albeit along a rather long path. The most

common programs that we use these days are built using object-oriented programming,

which is based on the idea of inheritance. Fields such as pattern recognition, artificial

intelligence and computer networks make use of hierarchy extensively [13. Hierarchical

networks are also implemented in a class of control systems that can be used for space

navigation [2].

Oden et al. [3] introduced the concept of hierarchical modeling as an approach to
overcome the difficulties of multiscale modeling. In this methodology, a hierarchy of

descriptions of the physics of the problem is first set up, ranging from the coarsest

possible description to the most detailed description contained in the class of models.

Thus in this context, it deals with scale hierarchy.

In this work, the term hierarchical strategy is used to convey the idea that analysis models

can be organized and managed hierarchically in order to rapidly setup a new analysis

model. New models are derived from the base model whose information is either

inherited or overridden by the new model. Thus, we are dealing with a hierarchy of

models.

6
I
~I
I
I

I
I
I
I
I
I
I
I
1
1
I
I
i
I

The global/local analysis method is inherently hierarchical in nature if you consider the

local model is actually a more refined part of the global model. Thus, it makes sense to

manage data in a hierarchical form to tap into the full potential of the global/local

analysis method.

Much of the analyses carried out by industry and academia uses global/local Analysis.

The global/local technique in some sense has been around since before the finite element

method was developed. This technique comes in very handy when designing large

complex structures such as aircraft and automobiles where large finite element models of

these structures are utilized. These models are useful in obtaining a more accurate

response to load conditions or for optimizing different characteristics. But there is a

practical limit to the amount of refinement that these models can hold simply due to the

fact that the computational cost for such an endeavor would be too much. In such cases,

separate analysis is done on localized regions of the structure where the refinement is

high enough to obtain a reliable design. Global/local analysis is also used in fracture

mechanics to calculate the stress intensity factor for cracks [4]. This technique is also

used to compute the effective properties of composite laminates [5]. Iterative globalflocal

finite element analysis is found to be less taxing on computer memory requirements [6].

The global local method is also used in the failure analysis of textile composites [7].

A number of strategies have been developed to enhance finite element solutions in the

regions of high gradients. In the h-method, the finite element mesh is refined by keeping

the elements of the same order and subdividing them. In the p-method [8], the same mesh

is retained but the order of the interpolation function (approximation) is increased. The

third method (I-p) is a combination of the first two strategies. The h-p version uses a

simultaneous increase of the polynomial degree and mesh refinement. The rates of

convergence for the h-, p- and h-p versions in terms of the number of degrees of freedom

have been identified and quantified by Babuska and Szabo [9].

The hierarchical finite element method (or HFEM) [10, 113 belongs to the p-version of

the FEM. In HFEM, the order of approximation (interpolation) functions are

hierarchically increased - the new order of approximation is based on the lower order that

is previously constructed.

I
I
~I
I
I
1
I
I
I
I
I
1
1
I
I
I
I
1
I

7

A version of the finite element called the s-version, where s stands for superpositioning,

was introduced by Fish [121. The basic idea of this method is that a portion of the finite

element mesh in which steep gradients are indicated by the solution is overlaid by a patch

of higher-order hierarchical elements. Fish and Gutta1 [131 developed the s-version of the

finite element method for laminated plates and shells. In their technique, the global

domain is idealized using a 2-D Equivalent Single Layer (ESL) model and the location of

the critical regions where a Discrete Layer (DL) model is needed is identified using

Dimensional Reduction Error (DRE) indicators. These regions are superimposed by a

stack of 3D elements (DL model) and thus both the local and global effects are predicted.

Fish [14] also used the s-version to hierarchically model discontinuous fields such as for

crack propagation. This is achieved by overlaying portions of the finite element mesh

where discontinuities need to be embedded with a finite element mesh that is

discontinuous across the crack. This also proves to be computationally efficient due to the

hierarchical nature of the method where the base mesh can be fixed and only the super-

imposed mesh needs to be modified.

Another strategy to enrich finite element solutions is by adding special shape functions

that are known to approximately model the behavior of the exact solution. This idea was

introduced by Mote [151 who developed a global-local Finite Element where a combined

global and local dependant variable representation couples the conventional and finite

element Ritz methods.

Voletia et a1 [161 address the use of global/local FEM to analyze large-scale periodic

structures made up of multi-material composite systems. They explain two different

techniques - the specified boundary method and the multi-point constraint method. The

globalflocal FEM techniques prove to be faster especially as the size of the problem

increases.

Sun and Mao [171 proposed a refined global local finite element analysis method which

involves 3 steps to improve the efficiency of the analysis. The global analysis of a coarse

mesh provides a displacement solution, which is then used in the local analysis for

computing detailed stresses using refined meshes. Finally, a refined global analysis is

conducted to improve the accuracy of both displacements and stresses.

8

Whitcomb [181 described the process of iterative global/local finite element analysis

where the accuracy is retained by using an iterative procedure to enforce equilibrium

between the global and local regions. Babuska et a1 [19], Reddy and Robbins [20] have

done some work on the reliability, convergence and accuracy aspect of global/local

techniques. N.F. Knight, Jr. et a1 [21] present a global/local analysis methodology for

obtaining the detailed stress state of structural components. Noor et a1 [22] describes two

predictor-corrector procedures for the accurate determination of the global as well as

detailed response characteristics of plates and shells.

Ghosh et a1 [23] proposed a hierarchical multi-scale computational model for damage in

composite materials. Analysis is done at the structural and micro-structural scales. The

microscopic analysis is conducted using a voronoi cell finite element model (VCFEM)

while a conventional displacement based FEM code executes the macroscopic analysis. A

simple plate with a hole problem was analyzed hierarchically using three different

refinements levels.

Noor et a1 [24] used hierarchical sensitivity analysis to identify the parameters that have

the most effect on the non-linear response of composite structures. Their modeling

approach used for multilayered panels can be divided into different categories that cover

a wide range of length scales from local to global structural response: detailed

micromechanical three-dimensional continuum models, quasi-three-dimensional models,

and two-dimensional plate and shell models. The nonlinear response of the structure is

dependent on a hierarchy of interrelated geometric and material parameters at these

different categories. The sensitivity of the response to variations in these parameters at

each level provides insight into the importance of the parameters and helps in the

development of materials to meet certain performance requirements. Ransom and Knight

[25] discuss a methodology for the globaMoca1 stress analysis of composite panels. Noor

et a1 [26] discusses different globaVloca1 methodologies and their application to non-

linear analysis.

J. Fish et a1 [27] developed a hierarchical version of the composite grid method (denoted

as HFAC), which exploits the solution of the shell model in studying local effects via a

3D model solid model. It is hierarchical in the sense that information from the analysis of

I
I
I
I
I
I
I
1
I
I
I
1
I
I
1
I
I
I
I

9

an equivalent single layer (ESL) model is exploited in the resolution of local effects using

a discrete layer (DL) model. The multigrid and composite grid methods [28, 29, 30, 31,

32, 331 are a widely used hierarchical global/local strategy. Some works on methods

based on hierarchical decomposition of the approximation space are described in [34, 35,

36,37,38].

Even though there are various versions and methodologies of the finite element method,

there are several basic issues that can cause bottlenecks during an analysis that does not

deal specifically with a kind of methodology but with the generic finite element method.

As the complexity of the problem increases, analysis models increase in size and the

amount of data that needs to be handled becomes overwhelming. When designing a

structure, it is common to make frequent modifications to the model during the process.

A number of analyses are conducted before adequate information can be obtained to

make a good decision regarding a final design. In such cases, the ability to use data from

different models simultaneously becomes a major advantage. Thus, data management and

control is a big issue that needs to be dealt with. This calls for interaction between models

and at different detail levels. Also, time is an important factor and it is always

advantageous to be able to setup analysis model quickly and efficiently. One way to

achieve this is by using the computer to automate as many steps as possible that are

involved in generating an analysis model. Some of these functions are boundary detecting

and matching. But letting the computer do this work instead of the user manually entering

the information, a lot of time can be saved and analyses can be conducted efficiently. It is

these and other problems that we try to address in this project. We develop an

environment for rapid analysis using hierarchical description of models and efficient and

robust data control mechanisms to solve problems quicker as well as reliably.

10

The HS4RAE System - Overview

The term HS4RAE stands for Hierarchical Strategy for Rapid Analysis Environment.

From here on, it is also referred to as the Hierarchical System. In this section, an

overview of the hierarchical strategy and its philosophy is given. Some of the challenges

addressed in this effort are also mentioned. Comparison is also made to other software

that deals with this problem.

The hierarchical system consists of the following key components:

0 Hierarchical definition module: this module is made up of the different classes

and functions that implement the inheritance and storage of hierarchical data.

Visualization tool: for interpreting the results of the analysis.

Scripting Language: it is used to describe the relationships between different

models. The user can issue commands to the system using the scripting language.

It can also be used to maintain persistence of data.

Graphical User Interface (GUI): this is another way for the user to interact with

the hierarchical system. Using the GUI, the user can interact with the hierarchical

system in real-time with the help of the keyboard and mouse.

ImporVExport functions: these set of functions allow the transfer of data between

the hierarchical system and other external software like mesh generators and FEA

programs like FEMAP, ABAQUS etc.

Solver: This is a set of classes and functions that are used to numerically solve the

set of equations defined by the finite element model.

0

0

0

0

At the core of the Hierarchical Strategy is the inheritance tree. It is used to describe how

different analysis models can be organized and managed hierarchically to rapidly create a

new analysis model. The hierarchy exists only to express the inheritance relationships

between models. New models are derived from the base model whose data is inherited,

overridden or expanded by the new model. This way the derived model can have new

characteristics that are different from its base models. Data in this context could mean

anything from geometric mesh information and load conditions or boundary conditions to

even solutions of analysis models. This additional or differentiating data that is used to

derive a new model from its base model is defined to be a component. At present, we

11

have implemented only inheritance of geometry and therefore it makes more sense to use

the word component to define the differentiating data that results in the creation of a new

model.

Each node in the inheritance tree is a model. This model is described in terms of all the

components along its model path. The model path is the shortest route which links the

parent node in the inheritance tree to the current model. Figure 1 illustrates the meaning

of model path of a model. In this case, the model path for the model FRCd is the route

traced by the models -LC, H2, H1, H1 C, HlRC and finally FRCd. Any other route would

require retracing through a model that had already been covered by the path. Thus, the

derived model FRCd is a combination of the component at FRCd and the components of

all the models in its model path just mentioned. The figure shows two different views of

the inheritance tree. The component view shows the corresponding components at the

nodes in the inheritance tree. In the model view, each node in the tree is associated with a

complete model.

Existing commercial finite element analysis software that used some kind of hierarchy

was compared to the philosophy described in this work. In Designspace by AnSys [39],

the ability to combine components to build models is limited in the sense that each

hierarchy (or ‘tree structure’) represents a single model. While in the Hierarchical

System, each node in the model hierarchy defines a complete model and not just a

component. The hierarchical system provides a framework that has the ‘intelligence’ for

building a hierarchy of models. SIMBA (Simulation Manager and Builder for Analysts),

developed by Sandia Labs [40], also builds FE models from various components but it

does not address data flow between different models in the hierarchy. The hierarchical

system deals with a collection of models that have the ability to interact, communicate,

and pass information with each other.

Model View m

12

L’ ’ ‘L
Component View

I I

Figure 1: Inheritance tree and its different views

The ability to easily pass data between models makes it ideal for adapting it to different

types of analysis methodologies. This hierarchical strategy can be used for different

approaches such as iterative global/local analysis, submodeling, substructuring,

multiscale and multi-physics analysis. These schemes require different types of

communication between the global and local models. The important distinction is that

this philosophy provides the framework for managing hierarchical models and efficient

data flow between analysis models. Therefore, this framework has the potential to be

used to implement various types of analysis problems. Since it imposes no restriction on

the type of problem that can be analyzed, the system can be used for any problem that can

I

I
I
I
I
I
1
1
I
I
I
I
I
I
I
I
I
I

I I
13

be solved by a methodology such as FEM to conduct structural analysis, progressive

failure analysis, repair or optimization.

One of the initial tasks of this project was to identify and develop hierarchical data

structures to define models by incorporating inheritance. This has been implemented and

the different classes and functions that were developed will be explained in the later

sections. This kind of hierarchical organization and the ability to communicate between

models in the hierarchy helps reduce the difficulty in setting up and running models as

well as managing the results for the various cases, thus reducing the timeframe and

human workload in conducting analyses and digesting its results.

A major task for the hierarchical system is information management. Since the system

would be managing a hierarchy of models, it would have to store the information for all

models. At the same time, there is no restriction on the size of the model. Thus, the

system should have a robust and efficient data management strategy that can handle

numerous as well as large datasets.

Another important feature is the ability to interface with other software. There is a lot of

legacy software that are present in the market and each of them might have its own forte.

It would be unwise to assume that all kinds of analysis work can be conducted within this

environment itself. It would be advantageous to make use of special features that other

software possesses. This is possible by exporting data into another format that can be

understood by other commercial FEA software using some interface function. Presently,

it is possible to export mesh data and other model information to the commercial software

FEMAP by writing FEMAP Neutral files. In this way, the advanced mesh generation,

analysis and post-processing features of the FEMAP software can be made use of. This

capability can be extended to export analysis model information to other commercial

FEA software like NASTRAN, ANSYS or software that use the EXODUS [41] Database

Format. When exporting an analysis model to external software that is typically not

hierarchically defined, a model has to be set up by joining the components in such a way

that the external software is able to ‘understand’ because all the data is stored in a

hierarchical form within the system. Similarly, when external software is used to conduct

the analysis, the results are passed back into the hierarchical system through the interface,

14

Computational Engines/
Mesh Generators

I
, I

HS4RAE
I

I
~I
I
1
I
I
u
I
I
I
I
I
I
I
I
I
I

which maps the results back into the hierarchical format. This way the user is not forced

to use only this system and can make use of other features that are available in

commercial software. Figure 2 gives a block diagram illustrating how the hierarchical

system interfaces with the external software. ALPHA-HS denotes the solver resident

within the Hierarchical System.

I NASTRAN I
I ANSYS 1

I Geompack++ I
Q
Q
Q

I Hierarchical
Model

Description
Modules

ALPHA-HS

I I

I

Figure 2: Interface to external software

One of the key components in an analysis environment is the visualization of the models

and the results of the analyses. The visualization tool in the hierarchical system is called

Plotter2002. It is capable of plotting the hierarchically defined models. The tool has

various visualization options to display the results to the user. The user also has the

ability to select elements in the model using the mouse. A more detailed explanation of

the tool and its features is given in the section HS4RAE - Implementation. In addition to

the existing features, the capability to compare results of analyses would be usehl in

making judgments for the design of a structure. The system should be able to provide

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

15

various options for comparing results such as change in stress distributions between

multiple models. Another useful feature would be to allow the user to enter formulas for

visualization of a dataset, or maybe a combination of more than one dataset. These

features have not been implemented as yet.

The scripting language is an important feature that forms the link between the

hierarchical system and the user. The user inputs data and issues commands to the system

using the scripts. Like almost all software, the need arises to save the data to the disk for

later reference or for resuming the work at a certain point in time. This can be achieved

using the scripting language. The hierarchical models can be saved to the disk using the

scripts and the scripts can be read by the system later on to load the models back into the

memory. The syntax of the scripting language can be found in Appendix- HS4R4E

Scripting.

The following section gives more in-depth information related to the different concepts

and implementation of the Hierarchical System.

16

HS4RAE - Concepts

This section explains the different concepts involved in this philosophy. One of the major

tasks involved in this effort is the design and implementation of the inheritance

mechanism. Another important task is boundary detection and matching. It also discusses

about the ‘digital glue’ thi3t is used to join the components to form a complete analysis

model. When analyses arc: conducted on different models in the same hierarchical tree, it

is common to share a component between two or more models. This brings up the issue

of managing the results of the analysis and mapping them back the components. This is

achieved by buffering of solutions and is explained later in this section.

Considerable effort went into designing a robust as well as efficient mechanism for

implementing inheritance., which is the essence of the hierarchy. That means the ability to

derive models by inheriting, overriding and expanding the information defined in the

base model. Efficient data flow mechanisms are required and complex recursive

functions were developed that traverse the hierarchical tree to implement this. This kind

of recursive strategy can be used to access data at any node. The beauty of the recursive

strategy is that it can be used to perform any task on the models or the tree without

making modifications to fhe mechanism. This mechanism gives a model in the hierarchy

the ability to ‘interrogate’ another model for information.

In keeping with the main objective of this project, that is to conduct rapid analysis, it is

desired to automate as many functions as possible.

One of the functions that plays an important role is the boundary detection and matching

of a mesh. This is a major part in the process of deriving a new model from a base model.

When a component is used to derive a new model from a base model, the component

mesh replaces the corresponding region in the mesh of the base model. This is explained

in Figure 3 using a simple case involving only two components in the model path. The

new component deactivates all the elements (and nodes) that it would replace in all the

components in its model path. This brings up the use of a term called ‘collective mesh’.

The collective mesh is used to describe the mesh of the derived model, which is built

from the collection of Components in its model path. The sub-routines to detect and

match boundaries on two-dimensional meshes have been developed and implemented.

I
‘I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

17

When dealing with meshes in three-dimensional space, the problem becomes more

complicated. For now, WE: are dealing with 2-dimensional meshes and the implemented

functions perform well for these cases.

Component Mesh

Deactivated region : I I I I I I

\ I I I I I

Component Mesh
CollectiveMesh

Figure 3: Mesh association (Inheritance of geometry)

In order to setup a complete analysis model, we have to ‘join’ the different components in

its model path to create a combined model. There are a few methods in the literature to

achieve this. One of the methods is to use multi point constraints [161 to constrain the

degrees of freedom on thle boundaries of the child model to the parent model. This is an

exact satisfaction of compatibility using the interpolation functions. Another method is to

use interface elements (developed by Ransom, Aminpour et a1 [42-44]), which uses a

variational method to approximately satisfL compatibility at the interface. The first

method has been implemented in this system. The multi point constraints act as a ‘digital

glue’ to join the different components in the model tree. Figure 4 illustrates the use of

digital glue to combine three components. It can be seen from the figure that a node in a

model that is situated bottom most in the inheritance tree can be constrained to a node in

a model multiple ‘generations’ up the hierarchy and not necessarily to the immediate

parent model. This is implemented by using recursive functions to traverse the model

path.

18

/ / /
/
/
/

- - - - - Glue

- . . - . Glue

between Components B and A (model A)

between Components C and A d 3 (model B)

Figure 4: Joining components using digital glue

When a model is analyzed, certain data in the model path must be specialized for that

particular model. An example of such a type of data in the current implementation is the

degree of freedom (dof) map, which is required to map the results back to the

components. This beconies a problem when a component can be a part of two models,

which can easily be the (case as shown in Figure 5. In this case, Model B is used by

Model C and Model D. 'Therefore, the need arises to set only one model as 'active' at any

point in time. Thus, each time a model is made active, the dof maps stored in its

components have to be refreshed, since the existing dof maps in those components could

be the dof map for the previously active model. In this way, the information in a

component is dynamically updated by the currently active model and the component has

a dynamic buffer storing the dof map for the active model. At present, this is not a major

limitation. In fact, it saves on memory and book-keeping of this data by retaining the data

in the component and making use of the hierarchy. The need might arise in the future for

more than one model to simultaneously require their specialized data, which currently

n
19

resides in the component. In that case, we would need to maintain the data with the model

rather than store it in the component.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Model C

Figure 5: Bi

Model D

Tering of solutions

I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I

20

HS4RAE - Implementation

As mentioned earlier, this kind of an environment requires a number of tools to

successfully analyze a problem. Each of the tools developed will be now discussed in

detail.

The C++ programming language and Visual Basic were used to develop the Hierarchical

Environment. The object oriented-ness of the programming language was made use of

extensively to implement the inheritance and hierarchical nature of the models.

The hierarchical definitio’n module is a collection of classes and functions in the form of a

dynamically linked library (DLL) called hs4rae.dll. All the classes and functions are

written in C++ and compiled using Microsoft Visual Studio 6.0. The library contains

classes that bring the ‘hierarchical’ character to the system. The two classes that are

central to this system are the Model class and the ModelHandler class. The hierarchical

definition module has the: solver incorporated into it. It was developed by modifylng a

conventional in-house finite element code called Alpha.

The hierarchical inheritance tree is implemented in the form of a linked list and each

node in the tree is a Model object. Each model has a link to its parent model and links to

the models derived from it. Recursive functions have been coded that traverse the model

path to assemble the collective mesh of the model, find the boundaries in the model and

match the boundaries of components. A recursive strategy is built to access data at any

tree node. The Model ob.ject processes the main scripting language commands. It is used

to execute commands on a model, for example to derive a new model and to save its state

by storing the commands. The syntax of the scripting language is explained in detail in

the appendix.

The Model object handles only inheritance of geometric data. The inheritance of all other

non-geometric information (for example, load conditions) is to be handled by the

ModelHandler class but this has not been implemented as yet.

A ModelHandler pointer is a data member of the Model Class. It is the executive for the

finite element analysis, results retrieval and visualization. The handler associated with a

model provides the glue that combines the components to assemble a complete analysis

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

21

model such as by using multi point constraints (MPC). It manages the storage of and

access to the results. The handler can be created/modified using the model handler

scripting language or the (SUI. A model can have more than one handlers associated with

it depending on the type of analysis. Analysis-specific handlers can be derived from the

base ModelHandler class depending on the requirement, for example, different handlers

would be needed for linear and non-linear analyses. The handler holds the analysis

related data such as load conditions, constraints and material properties. All data can be

inherited from the parent model’s handler or selectively overridden using the script or the

GUI.

Figure 6 gives a class diagram of the hierarchical definition module. It can be seen that

the geometric data such as the mesh data resides directly in the model object where as the

other information such as load conditions, constraint condition and material properties are

stored in the ModelHandler, which in turn is part of the Model class.

denvedModelList

ownerModel1 f
I I

component

HS Mode I-FE

element 1
____+ Element I

I

I I I

eleType

matType
d0flYpe

-7

equation 1
I
- Equation

Co m po ne nt I nfo
modelHandler

L i Material 1
matenallis

Load

I , I

I r

Figure 6: Class diagram of the hierarchical definition module

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

22

The equation solver is incorporated in the ModelHandler class. It must be noted that the

solver does not solve the analysis problem hierarchically and is just a conventional

solver. Therefore, the ModelHandler class constructs the complete set of equations as a

conventional model and asks the solver to solve it. There is a potential for a hierarchical

solver but this idea has not been pursued as yet.

Figure 7 illustrates the f low of data in the Hierarchical System.

The system is developed using C++, which is a high-level object-oriented programming

language and allows efficient management of memory resources. The models are stored

in the memory as objects that are dynamically created and managed using pointers. As a

I--- I

I
I
I

a

--o

Commands
1 , I>

~SelCunmandRocarsa

c o npo n e n t

I
I
I
I
I I
I
I
I
I
I I ---

The integrated analysls
environment contains both
plotter and internal equaton
solver that can take ackantage
of the hterachcal descriptlon 4 of nudels

Hierarchical Database

Component Geometry
Discretization Data (Mesh)
Component Attributes
(e.g. material, DOF, etc)

__________________------

Model Handler

Link Components 0-------
Load / Boundary Conditions

- -5 *- , Analysis Type
*** (: - j Solution Handler e------

. , I '\./

Specified mdd createS
modelkndlsr.

Each d e l object can stcre
m r e than one rrodelHandkr.

M e 1 hheritance is used in
creating a nen d e l .

Conponents are glued
together us- MPCs or 4 interface dements

I

Updating component states and
reportconponent state

FE Solver

Figure 7: Data flow chart

External conputatbnal
engines include:
* NASTRAN
* AEAQUS

ANASYS
* ...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

23

result, the only restrictions imposed on the system with respect to the number of models

and their sizes are the memory on the computer and the limits set by the programming

language.

Data persistence is achieved by the capability to write all the data to the disk for re-use. A

model scripting language has been developed which defines the hierarchical tree and a

model handler script for analysis control of a model in the tree. These scripts can be used

to store the state of analysis so that one can revisit it later. A lot of the other model data is

stored in the format defined by the existing in-house FEA code.

The system uses the same solver as in the existing in-house FEA code. Since Alpha has

been modified and added to the hierarchical definition module, the hierarchical library

has the FE solver capability within itself.

The visualization tool called Plotter2002 is a modification of an existing in-house tool

called Plotter2000. It is written in C++ and uses the Microsoft Foundation Classes. The

Plotter has two versions - a stand-alone version and an ActiveX control version. Both

these versions are built upon the same underlying functional code that is in the form of a

DLL called the PlotInterface.dl1. The plotter has three different options of outputting

results - in GIF Format, PostScript format or directly onto the monitor screen using

OpenGL. The Plotter has been designed in such a manner that it can be easily adapted or

enhanced to display different types of data without the need for major code re-writing.

This is made possible by making use of an interface class called the PlotInterface class

that provides an interface between the data to be displayed and the output mode. In this

way the Plotter need not ‘know’ what it is plotting. For example, if a model is to be

plotted, the major work that is needed is to add a function to the model object to plot

using the PlotInterface.

The plotter is able to read the mesh files that are used by Alpha and the Hierarchical

System. The plotter can also read result data from analyses and give contour plots of

displacement and stresses. It has various visual features that make it more effective and

easy to interpret the results of an analysis.

The plotter has the basic features that most mesh viewers possess such as labeling of

nodes and elements and highlighting different elements based on user input. It is also

I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I

24

possible to zoom in to observe the plot in detail. Another feature is the ability to rotate the

mesh to get another perspective of the plot. The plotter employs its own hidden line

removal algorithms to plot three-dimensional meshes or complex two-dimensional

meshes.

For more complex analysis of results, it is possible to select and plot different elements

from a mesh based on its material group. Other useful features include making specific

elements transparent by directly specifying the element numbers or defining a region in

the mesh. Contour plots can be tweaked by modifylng the contour ranges and the

magnification scale factor I

I
1
I
I
I
I
I
I
I
I
I
I
i
I
I
I
I
I
m

25

HS4RAE Graphic User Interface

The GUI for the hierarchical system is built on the existing visualization tool called

Plot2000. The existing code was modified to be able to link with the Hierarchical

definition module and thereby ‘understand’ the new classes that were developed for the

Hierarchical system. New dialog boxes were added to let the user interact with and

visualize the hierarchical model. The GUI makes it possible for the user to create and

analyze hierarchical models on the fly as opposed to using a scripting language.

However, the scripting language is very important because making the program write a

script can save the current state of the model. This script can then be used by the program

to load the hierarchical model back into the memory.

One of the most important components used to help the user visualize the hierarchical

model is the tree control. This control is added to the main dialog box of the GUI and

shows the hierarchical tree in the form of the directory structure in the hard disk. The

different nodes in the tree: denote each model in the hierarchical tree. Right clicking on a

model gives a number of options to choose fi-om. One of the options is to choose which

model-related view is to be plotted in the plot window. There are basically two kinds of

views- the complete model or the component denoted by the node in the hierarchical tree.

Two additional plots that are related to the model are the basemodel copy and the

basemodel. The basemodel is the component view of the parent model of the currently

selected model. The basemodel copy is the region in the parent model that is replaced by

the current component.

There are a number of list boxes that show the different entities associated with a model

like the element groups and node groups. On selecting any existing element group or

node group, the corresponding entities in the mesh are highlighted on the plot window. It

is also possible to create new groups using the GUI. One of the new features added to the

plotter is the ability to use the mouse to select and highlight elements in the plot window.

This selection can be saved to a group. Alternatively, you can also use the keyboard to

specify which elementshodes need to be in the group.

The main dialog box also shows the different result sets that are available to view i.e. the

results of the different analyses that were conducted on the models. To go with that are

I
I
I
I
1
I
I
I
I
I
I
I
1
I
I
I
I
I
I

26

different result visualization options, for example, whether to view the results for the

component or the complete model, or whether to view the displacements or the stresses.

The GUI can be used to add or delete models in the hierarchical tree. This can be done by

choosing the corresponding menu item in the pop-up menu of the tree control. When

adding a model, the region in the current model that will be replaced by the new

component has to be defined. This can be done by simply selecting the region with the

mouse. There are two ways to do this. One is to simple point and click to select an

element and repeat the process to select more elements. Clicking on the same element

again will deselect the element. Another option is to choose the rectangle tool in the

toolbar. This tool lets you define a rectangle with two clicks - denoting any two opposing

comers of the rectangle. And this lets you select all the elements that fall within this

rectangle. The ‘select’ and ‘unselect’ button in the tool bars let you use the rectangle tool

to correspondingly select lor unselect buttons. The add model menu option brings up a

dialog box that asks for a name for the new model and a number of options to specify the

mesh file for the new component. One option is to use an external mesh generator to

create a mesh file. The path to the mesh generator can be entered in the textbox provided

and the program can be launched. One thing to remember is that once the mesh has been

created, it has to be converted to a format that can be understood by the hierarchical

system. Another option makes use of an external mesh generator called GeomPack++

that has been interfaced with the hierarchical system. TheGeomPack++ utility is an

object- oriented program that runs on the command line and does not have a graphical

user interface. This mesh generator can be used to refine the region that has been

selected. The Hierarchical system is also interfaced to the FEMAP software. Using this

option exports the selected region to FEMAP and launches the program. The extensive

mesh generating tools of the FEMAP program can now be used to create the component

for the new model. Once the mesh is created, it can be exported to a NEUTRAL file,

which can then be read by the hierarchical system. Finally, there is also the option of

directly providing the path to the mesh file if it exists already. Choosing the ‘delete

model‘ menu item deletes the selected model and all the models that are derived from it.

Another important menu item is the ‘Model Settings’. This option lets the user define the

parameters required for conducting the analysis that would typically go into the

I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

27

ModelHandler script when using scripting. This brings up a comprehensive dialog box

that collects information about the components, materials, constraints, loads and analysis

and output options. The element group, node group and material group to be used for the

analysis are selected from the list of groups that have been defined for the component.

This process is repeated fcr all the active components in the model path of the current

model. The material tab of the dialog box displays the material library and lets the user

add or delete materials to the library. Currently, only the Planestress material can be

entered using the GUI. The Constraint tab displays the number of constraints on the

model and also allows the user to add or delete constraints. Similarly, the Load tab lets

the user add, delete or modi@ the load conditions acting on the model. Only the

PointLoad and Point Constraints can be entered using the GUI for now. The Analysis tab

let the user choose which lype of solver to use for the analysis, for example, Sparse, Olaf

or Profile. Other parameters that can be included in this tab are the optional outputs, but

this has not been implemented. For now, if the GUI is used to conduct the analysis, all the

possible output files are created.

After all the parameters required for the analysis are defined, the system is now ready to

conduct the analysis. To do this using the GUI, the user can choose the ‘Analyze Model’

menu item. Another option the user has is to export the model to FEMAP and let the

FEMAP software do the analysis. This is made possible by interfacing the hierarchical

system with the FEMAP software through the NEUTRAL files. It should also be possible

to import the results back from FEMAP into the Hierarchical system after the analysis

has been conducted but this has not been implemented.

Another version of a GUI called Hviewer was developed which is very useful in

illustrating the features of the Hierarchical Definition module and the boundary matching

routines. This version is also written in C++ and uses the Microsoft Foundation classes

but is built from scratch as compared to the other GUI, which is a modification of the

existing plotter. HViewer uses the built-in hidden line removal features of OpenGL for

plotting where as the Plotter uses in-house algorithms for this purpose.

I
I
I
I
I
I
I
I
1
I
1
I
I
I
I
I
I
I
I

28

I

Figure 8: HViewer screenshot

Like the Plotter, the HViewer is also linked to the Hierarchical Definition Module and

can understand all the hierarchical classes developed for this system. The HViewer also

makes use of a tree control to visualize the Hierarchical tree and can generate different

views of the models like the model view, component view and the basemodel copy. The

HViewer does not have the capability to setup an analysis model interactively but uses
the scripting language. The HViewer's forte is its plotting features for visualizing

hierarchical models. It can generate stacked mesh plots of a hierarchical model and

outline boundaries including those between components that are matched. The HViewer

uses the external Plotter program to view the results of an analysis like the displacement

and stress contour plots.

A Visual Basic version of a GUI was also developed early on during the project in order

to check the performance of the ActiveX control version of the Plotter. It did not have the

ability to setup an analysis model interactively either. The GUI interfaced with the

Hierarchical definition module using exported functions. Like the other GUIs, this one

also used a tree control to display the hierarchical tree.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A

29

s iJ LS
E Q LC I

I I H1

ModelFle: nOde-F.plt

N u n b e r d N o d t t : 521
N h d E m s :
N u r k r d Dimensimr:

H2

Figure 9: VB GUI screenshot

It had four different visualization options - use the plotter controls to plot a complete

model view as well as a component view, plot the model view and display the numerical

mesh data in a textbox, display the numerical data alone and lastly plot all the

components in the model path of the currently selected model. The VB GUI made use of

dynamic creation of ActiveX controls to create a number of plotter controls during run-

time as per the number of models in the model path. The GUI also accesses information

in the hierarchical model through the library functions and displays mesh information for

the currently selected model in a textbox.

30

Example I

I
I
I
I

I
I
I
I

The purpose of this example is to demonstrate and test the capabilities of the developed

system. It showcases the key functions and concepts of the philosophy such as

inheritance of models, boundary detecting and matching and visualization of results.

A simple problem is considered wherein FE analysis is conducted on a structure. The

geometry of the structure is then progressively modified to add a couple of holes. The

analysis begins with a coarse model and then goes on to refine the model to get a better

feel for the stress distribution in the structure.

The GUI is used to create the hierarchical models and the analysis proceeds based on the

results of the previous analysis model. The structure is made up of a material with the

following properties:

El 1 =2.82 GPa

E22=2.82 GPa

Nu12=0.395

G12=1.01 GPa

Plane Stress elements are used to model the structure. The constraint and load conditions

are kept the same through out all the hierarchical models and are illustrated below

Figure 10: Example I - load and constraint conditions

For this first example, the mesh data for the components used are generated externally. In

the second example, we go on to use the hierarchical system in conjunction with FEMAP

to conduct the entire FE analysis. The initial model (called LS) is loaded and the

parameters are supplied using the GUI to create a complete analysis model. The analysis

31

is conducted and it is found that the model is too coarse to realize the stress distribution

in the different parts of the structure (see Figure 1 1). The model is then refined externally

and a new model is derived called LC. The inheritance of the geometry is automatically

taken care of and the whole parent model is deactivated since the new component

overlaps the entire region occupied by the parent. The inheritance of the other data such

as material properties, constraints and load conditions are not yet implemented therefore

the analysis model must be set up again by entering these data using the GUI. Upon

analysis of the model, it is found that this refinement gives a pretty good resolution of the

stress and displacement distribution for practical purposes (see Figure 12).

I
I
I
I

I
I

I
I

Figure 1 1 : Model LS Analysis - Stress
Plot (O X X I

Figure 12: Model LC Analysis - Stress
Plot (Oxx)

Next a hole is added to the structure in a position as shown in Figure 13. The new model

H1 is derived from the previously analyzed model LC. In order to do this, the region in

the parent model that will be replaced by the hole is highlighted using the GUI and the

command to add a new model is issued. This asks for the mesh data file for the new

component. The component replaces and deactivates the corresponding region in the

parent model. The component is a simple 7-element mesh of a hole. Again the analysis

model is setup and the run. The system automatically detects and matches the boundaries

of the components and uses MPC's to 'join' them into a single analysis model. As seen in

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

32

Figure 13, it is possible to view the results of the model as well as all the active

components in the model path.

Figure 13: Model H1 analysis results

Another model (H2) is derived by adding another hole as shown in Figure 14. And the

analysis is conducted as before. In this way more models can be derived and the

hierarchical tree gets larger. We go on to derive model (Fl) by refining the fillet and then

derive another model (Flc) by introducing a crack in the fillet. The analysis of the model

shows very high stresses in the region surrounding the crack tip (see Figure 15).

I
I
I
I
I
I
I
I
I
1
I
I
1
1
I
I
1
I
I

c ~lrpbcarrrt f HZ

L. I; SIIsn = F1

-7. I . . "

5 F2
F2c

II

lasv r - -? r

Figure 14: Screenshot of Plot2002 GUI (with model H2 results)

Figure 15: Stress Plot of component Flc (exx)

33

I
I
I
I
I
I
I
1
I
1
I
1
I
I
I
I
1
I
1

34

So far, the hierarchical tree is just a single line of inheritance from model LS to model

F1 c. we can start another branch to the hierarchical tree by deriving another model (H 1 c)

from model H1 by refining the first hole and introducing a crack. Thus we start another

line of analysis that does not include the second hole. It can be seen how easy it is to

construct new models and make modifications. Model F2 is obtained from Model H1 c by

refining the fillet. And Model F2c is derived from Model F2 by introducing a crack to the

fillet. Figure 16 shows a screenshot of the GUI after the analysis of the last model F2c in

the tree is completed. The tree structure in the GUI dialog box depicts the inheritance

tree.

Figure 16: Screenshot of Plot2002 GUI (with Model F2c)

35

Scripts can be written to reproduce this state of the hierarchical tree and can be easily

modified to add more models and conduct analyses. This is what the model script for

Example-I would look like:

Createh!odel LS lug-s.plt
setModel LS

CreateModel LC 1ug-c.plt LC-1-egion-def.def
setModel LC
DefineElementGroup IC-material all 1
DefineNodeGroup LC--DOF all 2
DefineElementGroup 1.C-elasticElement2D all 1000
analyzeModel LC LC-.model.rae 0

CreateModel HI hole-.lc.plt H 1-region-def.def
H1::DefineElementGroup Hl-material all I
HI ::DefineNodeGroup HI-DOF all 2
HI ::DefineElementGroup HI-elasticElernent2D all 1000
analyzeModel HI HI-mode1.m 0

HI ::CreateModel H2 hole-2c.plt H2-region-def.def
H2::DefineElementGroiip H2-material all 1
H2::DefineNodeGroup H2-DOF all 2
H2::DefineElementGroup H2-elasticElement2D all 1000
analyzeMode1 H2 H2-model.rae 0

H2::CreateModel F1 filet.plt Fl-region-def.def
F1 ::DefineElementGroup Fl-material all 1
F1::DefineNodeGroup Fl-DOF all 2
F1 ::DefineElementGroup Fl-elasticElement2D all 1000
analyzeModel F1 Fl-roodel.rae 0

F1::CreateModel Flc filet-cracked.plt Flc-region-def.def
F1c::DefineElementGroup Flc-material all 1
F1c::DefineNodeGroup Flc-DOF all 2
F1c::DefineElementGroup Flc-elasticElement2D all 1000
analyzeModel Flc Flc-model.rae 0

H 1 ::CreateModel H 1 c hole-l-cracked.plt H I-region-def.def
Hlc::DefineElementGroup Hlc-material all I
H1c::DefineNodeGroup Hlc-DOF all 2
H1c::DefineElementGroup Hlc-elasticElement2D all 1000
analyzeMode1 Hlc Hlc:-model.rae 0

H1c::CreateModel R filet.plt Fl-region-def.def
F2::DefineElementGroup F2-material all 1
F2::DefineNodeGroup F2-DOF all 2
F2::DefineE~ementGroup F2-elasticElernent2D all 1000
analyzeModel F2 F2piodel .m 0

F2::CreateModel F2c filet-cracked.plt Fl-region-defdef
F2c::DefineElementGroiip F2c-material all 1
F2c::DefmeNodeGroup F2c-DOF all 2
Rc::DefineElementGroup F2c-elasticElement2D all 1000
analyzeModel F2c Rc--model.rae 0

ExitLlodel
F’rintS!cdelTreelnfo
OutputAllModels

ExitLlodel
end

Figure 17: Model script for Example-I

I
I
I
1
I
I
I
I
I
I
I
1
I
1
I
I
I
I
I

36

Remember that each analysis model would require an individual Modelhandler script.

The model handler script for the model H1 would look like this (Refer the appendix for

the syntax of the Scriptiqg language.

ComponentSettings LC
material LC-material
element Lc-elasticElement2D
DOF LC-DOF

exitComponentSettings

ComponentSettings HI
material HI-material
element H I-elasticElement2D
DOF HI-DOF

exitComponent Settings

SetCornponentDofMap

ReadMaterials
Planestress
1 "Sample"
2.82e9 2.82e9 0.395 1.01e9 0 0
exitReadMaterials

setComponentMPCGlue glueC2B

Readconstraints
Pointconstraint
L c o 1 0
Lc8811
exitPointConstraint
exitReadConstraints

readbads
Pointhad
Point 120 30 0 -le9 2
exitpointhad
exitReadLoads

DoAnalysis

doOptionalOutput

displacement
stress

displacement LC LC-dof
stress LC LC-elasticElement2D

displacement HI H I-dof
stress HI HI-elasticElement2D

exitOptionalOutput

end

Figure 18: Model Handler script for Model H1

37
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I

Example I1

The purpose of this example is to demonstrate the interfacing capability of the system

with external software. The mesh generation features of GeomPack++ and FEMAP were

used to generate the models used in this example. It also shows the ability of the system

to handle real-life problems. In this example we look at a more practical problem where

analysis of a side panel of an aircraft fuselage is conducted.

We start with a coarse global model of a section of the fuselage with 3 square holes

intended for the windows. The load conditions are approximated to be the hoop stress and

the longitudinal stress experienced by the fuselage due to the internal pressure in the

cabin (see Figure 19).

t t t t i t t t +
+
+
+
+
--+
+
+

Figure 19: Example I1 - load and constraint conditions

First, the coarse model is refined and then more models are derived by making

modifications to the second hole. The boundary of the second hole is made rounded to

make it like an actual airplane side panel. Further localization is done by adding small

holes to the periphery of the window in the middle. This is to model the holes for rivets

that go into the fuselage to hold the actual windows.

The analysis results show the regions in the panel where there is the most chance for a

crack to initiate. In this example, we stop at this point but further analysis can be done by

i
I
I
I
1
1
I
1
1
I
I
I
I
I
I
I
I
I
I

38

adding cracks in the panel and studying the its propagation in the panel. The results of the

analysis can be used to calculate the stress intensity factor for studying the fracture

mechanics of the model. This example shows that the system can be developed for

solving practical real-life problems.

Figure 20 shows a screenshot of the GUI with the stress plot of a slightly refined panel.

Figure 2 1 gives the component and model stress plots of the refined model of the panel

with holes around the window. It can be seen that the stress is highest in the region near

the holes at the top and bottom of the window.
-13 X~

.*%.Ami
--.-La

I .

I . -101 '-9v- I .

Figure 20: Screenshot of GUI with fuselage panel

39

Figure 21: Model and component stress plots for the refined model of the panel (cr,J

I
I
I
‘ I
1
I
i
I
I
I
I
I
I
I
I
I
I
I
I

40

Conclusion and Future work

The philosophy using a hierarchy description seems to have a big potential for solving

finite element analysis problems. As shown by the examples, it can easily reduce the

human effort in generating new models and making modifications to existing models. It

is especially ideal for glalbalAoca1 analysis due to the inherent hierarchical nature of the

method. This kind of an e:nvironment involves many tools such as mesh generators, finite

element solver, visualizaf ion tools and the hierarchical definition module. Each of these

has a major impact on how ‘rapid’ the process is.

The utilities developed jbr this project are meant for illustrating this philosophy and

cannot compete with commercial FEA software that has been developed of a long period

of time. With more effort,, many useful features can be included in the hierarchical system

to make it more effective and enable rapid finite element analysis.

More features could be added to the visualization tool to assist the user in making

decisions. In addition to using conventional MPC’s, the interface technology [39] can be

used to ‘combine’ components forming the complete analysis model. Currently the

developed system can handle only two-dimensional cases. It would not be complete

without robust boundary detection routines for three-dimensional geometries. This work

could also be extended to handle problems that involve multiple scales and multi-physics.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

USA RAE Scrip

41

Appendix

ing
This section explains the scripting language and its syntax. There are three kinds of

scripts that can be written. One is the model scripting language, which is used to define

the hierarchical tree. This, script does not contain the information needed to conduct a

complete analysis. The model script for a hierarchical model 'points' to the

corresponding model handler script for a particular model in the tree, which has the

detailed information needed for the system to conduct an FEA analysis. The last kind of

script is the region definition script file that is a set of commands used to define a region

in a mesh.

All scripts are terminated with the 'end' keyword. The following are the keywords in the

model scripting language:

DefineModelName (or DefineName): Defines the name of a tree node.
Format:
[execModel::]DefineModelName~DefineName model modelName
If "model" is presented, "execMode1" is discarded. Othenvise
"execMode1" or the current model is to be assigned "modelName".

DefmeModelMesh (or ClefmeMesh):
Format:
[execModel: :]DefineMoclelMeshlDefineMesh modelName meshFileName

Reads mesh for component.

CreateModel: Creates a tree node.
Format:
[execModel::] CreateModel modelName [meshFileName] [Region Definition FileName]

OutputModel (or OutputNodalModel) :outputs a conventional mesh for the complete
model association with thie tree node.
Format:
[execModel::]OutputMoclel [ModelName] MeshFileName

Outputcomponent :outputs mesh for component.

Format:
[execModel: :]outputComponet [modelName] outputName activeldeactive

Systemcall: to run system commands from within the script.

Format:
[execModel: :] systemCal1

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

command

PrintModelTreeInfo: prints graphic tree, info for each tree node and outputs model

component for each tree node and creates ‘julian’ NOD file (for VB GUI).

Format:
PrintModelTreeInfo

setModel (or setReader or setCommandProcessor) :Set current tree node. Pairs with

an ‘ExitModel’ or ‘exitUseMode1’ keyword.

Format:
setModel I setReader I setCommandProcessor modelName

...

...

...
ExitModel I exitUseMod.el

moveModelTo: moves position of model in tree.

Format:
[execModel::]moveModelTo [fromModelName] toModelName

toModel is the new baseModel of fromModel

fromMode1 can not be the rootModel

createModel_reuseMes,h (or duplicateMode1 or copyModel) :duplicates a component

and adds into tree, eventually add offsets, transformations , mirroring

Format:

[execModel::]duplicateModel I duplicateMode1 I copyModel newModel duplicatedMode1

outputAllModels (or outputAllNodalModels) :outputs all models in tree.

Format:

outputAllModels I output AllNodalModels

DefmeElementGroup: defines a group of elements in a model

Format:

[execModel] ::DefineElementGroup groupName selection attribute

43

DefmeNodeGroup: defines a group of nodes in a model

Format:

[execModel] ::DefineNodeGroup groupName selection attribute

ModelHandler: To create a ModelHandler and attach it to a tree node.

Format: [?: :]ModelHandler execModel modelScriptFileName [HandlerType]

"execMode1" must be specified.

If "HandlerType" if presented, it will be used to generate appropriate Handler.

The ModelHandler Scripting language is used to control the analysis of a model and

contains the necessary data for conducting a finite element analysis. The ModelHandler

script typically specifies the required parametershnformation in the following order:

1. Solver

2. For all components, specify

- Elementtype

- NodeDOF

- Material

3. Material Library

4. Constraints

5. Loads
6 . Generate DOF map

7. Glue(MPC)

8. Analysis command

9. Output options

The syntax for specifying each of the above mentioned parameters are given below:

1. Solver:

SetStorageMethod

SPARSE I OLAF I PROFILE

2. Specify Component information:

~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

44

A data block with this format is written for each component in the model:

ComponentSettings <Component Name>

material <Material GroupNamO

element <Element GroupNamO

DOF <Node GroupName>

exitComponent Settings

3. Material Library: a diata block with the following format is written for each material

to be added to the library. Within each block the format of the information would differ

depending on the type of material being defined. The example below gives the format for

a Plane Stress material.

ReadMaterials

Planestress

<Material Library Index> <MaterialName>

<El 1> <E22> <nu12> <(;12> <a1 1> <a22>

exit ReadM at en a1 s

4.Constraints: this section starts with ‘ReadConstraints’ and is terminated with

‘exitReadConstraints’. A data block is written for each Constraint type to be added to the

constraint Set. Within each block the format of the information would differ depending

on the type of constraint being defined. The example below gives the format for a Point

Constraint.

Readconstraints

Point Constraint

<Component name> <node number> <1 I O> [<1 I O> 4 I O> . . . for each DOF]

exitPointConstraint

exitReadConstraints

5. Loads: this section starts with ‘ReadLoads’ and is terminated with ‘exitReadLoads’. A

data block is written for each Load type to be added to the Load Set. Within each block

the format of the informalion would differ depending on the type of Load being defined.

The example below gives the format for a Point Load.

readLoads

PointLoad

45

I
I

11
I
I
I
I
‘ I
I
I
‘ I
I
I
I
I

I

<Component Name> <Node Number> <magnitude> <direction>

exitpointhad

exitReadLoads

6.Generate DOF map: this directive is issued by the command ‘setComponentDofMap’

7.Glue (MPC):

setComponentMPCGlue: <Glue type>

8. Analysis command: this directive is issued by ‘DoAnalysis’

9.0utput options: this section starts with ‘doOptiona10utput’ and is terminated with

‘exitOptiona10utput’. A line is written for each additional output option such as

displacement and stress. Examples are given for both types of outputs.

displacement [<componfent Name> <nodegroup N a m e]

stress [<component Name> <element groupName>]

If the optional informatilon is not supplied, then the output for the whole model is

obtained.

The Region Definition files are used to define a region in a mesh. The program reads and

interprets the commands; in the region definition files to create a list of elements that

define the region. The different commands and its syntax is explained below:

1. DefineRectangleRegion: this command uses the bottom left comer and top right

comer of a rectangle to add a rectangular region to the defined region.

Syntax:

DefineRectangleRegion

<X1 Y 1 (bottom left coordinate)>

<X2 Y2 (top right coordinate)>

2. AddElement: this command adds an element of a specified component to the list

of elements in the defined region

Syntax:

AddElement <complonent name> <element number>

3. RemoveElement: this command removes an element of a specified component to

the list of elements in the defined region

I

I
I

46

II
II

Syntax:

RemoveElement <component n a m e <element number>

4. AddElementLisl:: this command adds a list of elements to the defined region

Syntax:

AddElementList

<Component n a m e <element number>

...

...
End

I

I

I
I
I

47

~I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Mesh Data File Format
The mesh data is one of the most important pieces of information in a finite element

analysis. Finite element software has different formats for storing the mesh data on disk

as well as in the memory. The Hierarchical system as well as the plotter uses the same

formats to store and plot mesh information. It is pretty simple to interface this format

with other commercial software, which has been done in this project with GeomPack++

and FEMAP. The following is the format for mesh information file used in the

hierarchical system (which usually has the extension .PLT):

Each line denotes a record and the subscript at the end of a record denotes the number of

such records and a subscript at the end of a field denotes the number of such fields.

<Number of Nodes> <Number of Elements> <Number of Dimension9

[<NodeNumber> <x-coordinate> <y-coordinate> [<z-coordinate>]](Number of nodes)

[<ElementNumber> <no des per element> <NodeNumber>(,d, per &mmt)]~umbm of Elements)

48

References

I
I
I
I
I
I

11
I
I
I

I
I
I
I
I
I
I
I

‘ I

1. Pinkerton, Steven D., “Optimization of hierarchical structures”, Journal of
Information Processing and Cybernetics, v 29, n 4, 1993, p 221-23 1.

2. Stilman, B., “Hierarchical nehvorks for space navigation”, Applications of Artificial
Intelligence in Engineering, 1994, p 339-348.

3. Oden, J. T., Vemaganti, K. and Moes, N., “Hierarchical modeling of heterogeneous
solids”, Computer Methods in Applied Mechanics and Engineering Vol. 172, 1999,

4. Saito, K., Araki, S., Kawakami, T., Moriwaki, I., “Global-local finite element
analysis of stress intensity factor for a crack along the interface of two phase
material”, : Proceedings of the 1995 10th International Conference on Composite
Materials, Aug 14-18 1995, p 261.

5. Whitney, J.M., “Effective thermo-elastic constants of angle-ply laminates containing
90 degree ply cracks”, Journal of Composite Materials, v 35, n 15,2001, p 1373-
1391.

6. Whitcomb, John D., Woo, Kyeongsik, “Evaluation of iterative globalflocal stress
analysis”, American Society of Mechanical Engineers (Publication) NDE, v 10,
Enhancing Analysis Techniques for Composite Materials, 1991, p 201-205

7. Woo, Kyeongsik, W hitcomb, John, “Global/local finite element analysis for textile
composites”, Journal of Composite Materials, v 28, n 14, 1994, p 1305-1321.

8. I. Babuska, B. A. Szabo and I. N. Katz, ‘Thep-version of the finite element method”,
SIAM J. Numer. Anal., 18 (1981), p 515-545.

9. I. Babuska and B. Szabo, “On the rates of convergence of the finite element method”,
International Journal for Numerical Methods in Engineering, v 18, 1982, p 323-341.

10. Zhu, D. C., “Development of Hierarchical Finite Element Methods at BIAA,”
Proceedings of the International Conference on Computational Mechanics, Tokyo I,

pp. 3 -2 5.

1986, pp. 123-1 28.

1 1. Zienkiewicz, 0. C. and Taylor, R. L., The Finite Element Method, 4th ed., McGraw-

Hill, London, 1991.

(1 992).

composite shells, Internat. J. Numer. Methods Engrg. 39, n 21, Nov 15, 1996, p 3641-
3662.

14. J. Fish, Hierarchical modeling of discontinuous fields, Comm. Appl. Numer. Methods

15. C.D Mote. “Global-Local Finite element”, International Journal for Numerical

12. J. Fish, “The s-version of the finite element method”, Comput & Struct 43, 539-547

13. J. Fish and R. Gutta]., “The s-version of finite element method for laminated

8 (1992) 443-453.

Methods in Engineering, v 3, 1971, p 565-574.

39 I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

16. S. R. Voletia, N. Chandraa, and J. R. Millerb, “Global-local analysis of large-scale
composite structures using finite element methods”, Computers & Structures, v58,
1996, ~453-464.

17. K.M Mao and C.T Sun, “A refined global-local finite element analysis method”,

18. J.D. Whitcomb, Iterative global-local finite element analysis, Comput. & Structures

19. Babuska, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K., ”, International Journal
for Numerical Methods in Engineering, v 38, n 24, Dec 30, 1995, p 4207-4235.

20. J.N. Reddy and D.H. Robbins, “Theories and computational models for composite
laminates”, Appl. Mech. Rev 47 (1 994) 147- 169.

21. N.F. Knight, Jr., J.B Ransom, O.H. Griffin and D.M. Thompson, “Global/local
methods research using a common structural analysis framework, Finite Elem. Anal.
Design 9 (1991) 91-1 12.

22. A.K. Noor, W.S Burton and J.M Peters, “Predictor- corrector procedures for stress
and free vibration analyses of multilayered composite plates and shells”, Comput.
Methods Appl. Mech. Engrg. 82 (1990) 341-363.

23. Lee, K., Moorthy, S., Ghosh, S., “Multiple scale computational model for damage in
composite materials”, Computer Methods in Applied Mechanics and Engineering. v
172, n 1-4, Apr, 1999, p 175-201.

24. Noor, Ahmed K., Starnes, James H. Jr., Peters, Jeanne M., “Uncertainty analysis of
composite structures”, Computer Methods in Applied Mechanics and Engineering v
185, n 2-4, May, 2000, p 41 3-432.

Computers and Structures, v37, 1990, p375-395.

Finite Elements Anal. Design 2 (1 986), pp. 333-346.

local analysis of laminated composite shells”, Applied Numerical Mathematics, v 23,
n 2, Mar, 1997, p 241 -258.

28. J. Bramble, R. E. Ewing, J. E Pasciak and A.H. Schatz, “A preconditioning technique
for the efficient solution of problems with local grid refinement, Compu. Methods
Appl. Mech. Engrg 67 (1988) 149-159.

Comp. 31 (1977) 333-390.

Multiscale modeling and quality control in multidimensional case”, Comput. Methods
Appl. Mech. Engrg. 126 (1995) 17-38.

internat J. Numer. Methods Engrg. 32 (1991) 29-43.

40 (1991) 1027-1031.

25. Ransom, J. B., Knight, N. F. Jr., “GlobaMocal stress analysis of composite panels.”

26. A.K. Noor , Global-local methodologies and their application to nonlinear analysis.

27. Fish, J., Suvorov, A., Belsky, V., “Hierarchical composite grid method for global-

29. A. Brandt, “Multi-level adaptive solutions to boundary-value problems”, Math.

30. J.Fish and V. Belsky, “ Multigrid method for periodic heterogeneous media. Part 2:

I
I
I
I
I
I
I
I
I
i
I
I
1
I
I
I
I
I
I

50

3 1 . J. E Flaherty, P.K. Moore and C. Ozturan, Adaptive overlapping methods for
parabolic systems, in: J.E Flaherty, P.J Pslow, M.S. Shephard and J.D Vasilakis, eds.,
Adaptive Methods folr partial Differential Equations (SIAM, Philadelphia, PA, 1089)

(SIAM Frontiers, II1,l 1987).
32. S.D. McCormick, Midtilevel Adaptive Methods for Partial Differential Equations

33. S.F McCormick and .J.W. Thomas, the fast adaptive composite grid (FAC) method for

34. T. Belytschko, J. Fish and A. Bayliss, “The spectral overlay on finite elements for

elliptic equations, Math. Comp. 46 (1986) 439-456.

problems with high gradients”, Comput. Methods Appl. Mech. Engg. 8 1 (1990) 7 1 -
89.

35. J. Fish and R. Guttal, “The p-version of finite element method for shell analysis,
Comput. Mech Internat. J. 16 (1995) 1-13.

36. Fish, J., Markolefas, S., “Adaptive global-local refinement strategy based on the
interior error estimates of the h-method”, International Journal for Numerical
Methods in Engineering, v 37, n 5, Mar 15, 1994, p 827-838.

superposition of finite element meshes for linear elastostatics”, Appl. Numer. Math.
37. J. Fish and S.Markolefas, R. Guttal and P. Nayak, “On adaptive multilevel

14 (1994) 135-164.

38. H. Yserentant, “On multilevel splitting of finite element spaces”, Numer. Math

39. ANSYS, ‘‘Designspace User Manual for Release 5.x”, July 1999.

40. Paul Nielan, Sandia Lab News Vol. 54, Special Issue, Feb 2002.

41. Schoof, L., Yarberry, V., “Exodus I1 - A Finite Element Data Model”,

(1986) 379-412.

httD://endo.sandia.nov/SEACAS/Documentatio~exodusII.pdf, SAND92-2137,
Printed November 19135.

42. Ransom, J. B., McCleary, S. L., and Aminpour, M. A., “A New Interface Element for
Connecting Independently Modeled Substructures,” A I M Paper Number 93-1 503,
1993.

43. Ransom, Jonathan B., “Interface technology for geometrically nonlinear analysis of
multiple connected subdomains”, Collection of Technical Papers -
AIAA/ASME/ASCE/,4HS/ASC Structures, Structural Dynamics & Materials
Conference, v 3, 1997, p 1862-1 872

nonlinear analysis of a s t i t c h e m 1 composite wing stub box”, Collection of
Technical Papers - ALWASME/ASCE/AHS/ASC Structures, Structural Dynamics
& Materials Conference, v 3, 1997, p 2295-23 10.

44. Wang, John T., Ransom, Jonathan B. , “Application of interface technology in

I
I
~I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
I

I

51

Summary of Hyperlinked Documentation

In addition to this final report, an online documentation is being prepared that convey the

essence of the hierarchical system and at the same time delves into more detail explaining

the different concepts introduced when developing this system.

The online version of the report explains the different components of the system and

includes videos that demonstrate the use of this system. It also goes through the unique

classes, the key algorithms and modules that were developed during the course of this

project work.

The following page contains an overview of the online documentation. Most of the

bullets will be hyperlinks ithat will take you to a more detailed explanation.

I
I
I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I

52

Hierarchical Strategy for Rapid Analysis Environment
(HS4RAE)

Because much of what we do proceeds in a hierarchical way, it seemed natural to
consider whether stress analysis could be performed more efficiently if the tools were
designed with a hierarchical structure. The work documented in these hyperlinked pages
was supported by NASA Langley through NASA Grant NAG-1-01 080. Dr. Jonathan
Ransom was the technical monitor. It should be noted that not all hierarchies involve
inheritance. However, inheritance is the essence of the hierarchical structure developed.
This page outlines the concepts studied and the tools developed during this grant. Follow
the hyperlinks to obtain more detailed information.

0 Generic components of stress analysis suite of tools

0 Examples of inheritance
o Nature
o The way we think and work
o Stress analysis

0 Current analysis tools that share similarities with components of HS4RAE
o Model builder

w Designspace (Ansys)
SIMBA (Sandia)
NextGrade (NASA)

o Model Handler
Commercial FE packages
New methods in research stage

0 Characteristics of HS4RAE
o Inheritance based description of models and the results
o Inheritance / hierarchy tree
o Two classes form the core

Model class (Inheritance based model builder)
ModelHandler class (Inheritance based model handler)

o Script to describe relationships
o Digital glue (Interface technology, multipoint constraints)

0 Programs / Modules
o HS4RAE
o Visualization

Plot2002
HViewer

o ImporVExport functions

I
I
~I
~I
I
I
I
I
I
I
I
I
I
B
I
I
I
I
I

53

o PlotInterface

0 Algorithms developed
o Inheritance / hierarchy tree
o Tree traversal mechanism
o Boundary detection, sorting and matching

0 Classes developed
Model class
ModelHandler class
BoundaryFacelAt
BoundarySegment
MatchedBound arysegment.
MPCGlueList
Component Info
CompoundMesh
Group/ GroupItem

Programming techniques explored
o Object oriented programming
o ActiveX plotter control for FEA visualization
o C++/MFC and 'Visual Basic Interface to HS4RAlZ

Visualization techniques developed
o Exploded view to display inheritance relationships
o Display of component boundaries split between multiple layers of inheritance

0 Examples
o Simple example (Example I) to demonstrate basic concepts of philosophy

Inheritance . Boundary matching

0

o More complex example (Example 11)
Capability/potential to handle real-life practical problems
Interfacing with external software

